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First published July 27, 2016; doi:10.1152/ajpregu.00022.2016.—The
physiological transition to aerial breathing in larval air-breathing
fishes is poorly understood. We investigated gill ventilation frequency
(fG), heart rate (fH), and air breathing frequency (fAB) as a function of
development, activity, hypoxia, and temperature in embryos/larvae
from day (D) 2.5 to D30 posthatch of the tropical gar, Atractosteus
tropicus, an obligate air breather. Gill ventilation at 28°C began at
approximately D2, peaking at �75 beats/min on D5, before declining
to �55 beats/min at D30. Heart beat began �36–48 h postfertiliza-
tion and �1 day before hatching. fH peaked between D3 and D10 at
�140 beats/min, remaining at this level through D30. Air breathing
started very early at D2.5 to D3.5 at 1–2 breaths/h, increasing to �30
breaths/h at D15 and D30. Forced activity at all stages resulted in a
rapid but brief increase in both fG and fH, (but not fAB), indicating that
even in these early larval stages, reflex control existed over both
ventilation and circulation prior to its increasing importance in older
fishes. Acute progressive hypoxia increased fG in D2.5–D10 larvae,
but decreased fG in older larvae (�D15), possibly to prevent branchial
O2 loss into surrounding water. Temperature sensitivity of fG and fH
measured at 20°C, 25°C, 28°C and 38°C was largely independent of
development, with a Q10 between 20°C and 38°C of �2.4 and �1.5
for fG and fH, respectively. The rapid onset of air breathing, coupled
with both respiratory and cardiovascular reflexes as early as D2.5,
indicates that larval A. tropicus develops “in the fast lane.”

development; heart rate; larval fish; respiration; tropical gar

AIR BREATHING HAS EVOLVED independently �70 times in bony
fishes (Osteichthyes) (11, 29). Within the lobe-finned fishes
(Sarcopterygii), air breathing has evolved in three genera of
lungfishes. Dipnoi possess true, paired lungs (except for Neo-
ceratodus with a single lung) that are homologous with the
lungs of higher vertebrates. Within the ray-finned fishes (Ac-
tinopterygi), air breathing is found within the reedfishes and
bichirs (Polypteriformes within the Chondrostei), and within
the Neopterygii, where air breathing occurs in numerous orders
of Teleostei but also within the gars and bowfins (Holostei). As
varied as the taxonomy of air-breathing in fishes are the organs
they employ for aerial respiration, which can involve modifi-
cation of the swim bladder, the gut (stomach and/or intestines),

the opercular chambers or structures within them, or true lungs,
in the case of the lungfish.

The morphology and physiology of the terminal adult stages
of numerous air-breathing fishes has been extensively investi-
gated—for an introduction into that literature, the reader is
directed to some key reviews (12–14, 29, 38–40, 49, 52, 64,
69, 70, 76–78, 84). Yet, despite considerable investigation of
air-breathing fish, there are large gaps in our knowledge of
these respiratory specialists. Consequently, Lefevre et al. (50)
have recently indicated an urgent need for further information
on the physiology, especially respiratory physiology, of air-
breathing fishes, particularly those air breathers increasingly
employed in aquaculture.

Despite the need for additional studies, the physiology of the
embryos and larvae of air-breathing fishes has been only
superficially investigated and is poorly understood (just as for
the larvae of strictly aquatic fishes). The larvae are often the
most vulnerable of the life stages, and natural selection oper-
ates heavily at this level (e.g., 41). Especially interesting but
scarcely understood is the developmental transition in individ-
ual larvae from water breathing to combined water and air
breathing and how the morphology, physiology, and reflex
control of joint aquatic and aerial respiration come together in
the process of respiratory maturation (31). To this point,
however, most studies of the larval air-breathing fishes have
focused on morphological descriptions of development, some-
times in the face of environmental stressors (e.g., tempera-
ture, oxygen level, pollutants) or nutritional variation, e.g.,
long nosed gar, Lepisosteus osseus (20, 53); Cuban gar,
Atractosteus tristoechus (17); alligator gar, Atractosteus
spatula (16, 21, 61); blue gourami, Trichopodus trichopterus
(7, 8); Siamese fighting fish, Betta splendens (60); the arapa-
ima, Arapaima gigas (28, 75); and various genera of lungfish
(35, 43, 65, 90).

Even fewer studies have investigated the biochemistry and
cellular and molecular biology of air-breathing larval fishes
during their development, e.g., the snakehead Channa puncta-
tus (2); the African catfish Clarias gariepinus (93); the tropical
gar Atractosteus tropicus (3, 25, 30); the Florida gar Lepisos-
teus platyrhincus (26); alligator gar Atractosteus spatula (80)
the Australian lungfish, Neoceratodus forsteri (91); the arapa-
ima Arapaima gigas (10, 28), and the walking catfish Clarias
batrachus (45).

Most infrequent of all in the larvae of air-breathing fishes are
physiological studies at the organ system and organismal level.
Metabolic rates, gill ventilation and heart rates, patterns of
cutaneous blood flow, and the onset of air breathing and related
parameters have been determined in a few species, such as the
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Australian lungfish, Neoceratodus forsteri; the blue gourami,
Trichopodus trichogaster; the Siamese fighting fish, Betta
splendens; and the swamp eel, Monopterus (8, 51, 59, 60, 65,
66). Yet, even basic elements of physiological development,
such as the interrelationship between ontogeny and allometry
for physiological rates, when and how physiological regulation
of the respiration and circulation appear, and how physiolog-
ical variables are affected by acute and chronic environmental
stressors are lacking for larval air-breathing fishes.

Against this paucity of physiological information in larval
air-breathing fishes, we have investigated aspects of the respi-
ratory and cardiac physiology of the larvae of the air-breathing
tropical gar Atractosteus tropicus, an obligate air breather as an
adult. The Lepisosteiformes, comprising two genera and seven
species of gars, represents a particularly interesting group of
air-breathing fishes with importance for recreational fishing,
food consumption, and even culture (the prehistoric art of
many Mesoamerican cultures depict the “pejelagarto” or trop-
ical gar). Atractosteus tropicus has an extant distribution in
eastern North America, Central America, the Caribbean Is-
lands, with fossil gars recorded from Europe, the Asian sub-
continent, and South America.

Various aspects of the physiology of juvenile and adult gars
have been investigated (9, 15, 19, 27, 32, 48, 57, 73, 74, 79, 81,
82, 87, 88, 94–96). As typical for fishes generally, little is
known of the physiology of the embryos and larvae of A.
tropicus. More than just being one of many possible interesting
air-breathing fishes in which to study physiological develop-
ment, the tropical gar Atractosteus tropicus represents a fish
with very rapid embryonic and larval development. This spe-
cies in its natural habitat in Southern Mexico and Central
America develops at temperatures in the range of 26–30°C or
even higher, and accordingly the developmental progression
through embryonic and larval stages is very rapid simply based
on anticipated Q10s for metabolism and development. Beyond
“mere” rapid growth, however, larval A. tropicus begin to take
air breaths as early as 4.5 days after fertilization, just 2.5 days
after hatching and well before the yolk sac is absorbed and
feeding has begun (Burggren W and Martínez G, unpublished
data)! This compares with the onset of air breathing at about
32–44 days after hatching at similar temperatures in the air-
breathing labyrinth fishes Betta splendens and Trichopodus
trichogaster (60), 12 days in the air-breathing Thai pangas,
Pangasius sutchi (36) and 9 days in Arapaima gigas (54).
Graham (29) suggests that �10 mm is the lower limit of size
for the onset of aerial respiration in larval air-breathing fishes,
and while A. tropicus is at this length or longer when it starts
to air breathe, this gar does so within a few days of hatching!
The larvae of the tropical gar, thus, presents the unusual
opportunity to investigate the physiological transition from
strictly aquatic gas exchange with skin and gills to mixed
aquatic and aerial gas exchange with a gas bladder over a
compressed period of chronological time in an air-breathing
fish. As such, this species comprises a highly tractable model
for studying the early physiological development of air breath-
ing in a fish—a poorly understood process.

Importantly, the extremely rapid onset of air breathing in
larval Atractosteus tropicus–-assuming that air breathing is not
solely for gas bladder inflation—suggests not only that the gas
bladder has developed, but also that at least rudimentary
vascularization of the bladder is present. A functional aerial

gas exchange organ in the form of the swim bladder with no
associated cardio-respiratory reflexes would render aerial gas
exchange at these early stages much less effective. Conse-
quently, we thus hypothesized that larval A. tropicus would
show reflex regulation of the both branchial and aerial venti-
lation at an equally early developmental stage. To test this
hypothesis, gill ventilation rate and heart rate as a function of
acute changes in temperature, oxygen levels, and activity levels
(as well as air bladder ventilation following activity) have been
measured in larval A. tropicus from embryonic stages through
day 30 after hatching.

MATERIALS AND METHODS

Fish Rearing

Eggs and larvae were obtained from the aquaculture facility of La
Universidad Juárez Autónoma de Tabasco in Villahermosa, Tabasco
State, Mexico. All stages were simultaneously available from the
aquaculture facility. Once yolk sac absorption occurred (approxi-
mately day 5), larvae were fed with brine shrimp (Artemia sp.), water
fleas (Daphnia sp.), and powdered food, as described previously (56).

All stocks were maintained on an �12:12-h light-dark cycle in
noncholrinated water at 27–28°C unless another temperature is indi-
cated.

Histological material was prepared and photographed in 2006.
Physiological experiments were carried out in November 2015. All
experimental protocols for the physiology experiments were approved
by the Research Administration of Laboratorio de Acuicultura de la
Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico.

Length-Body Mass Measurements

To measure embryo length and mass (including yolk sac), embryos
were removed from the chorion. Length of embryos, newly hatched
and older larvae were measured from snout to tail end, with a digital
caliper to the nearest millimeter. After carefully blotting to remove
excess water, body mass was determined to the nearest milligram with
an analytical balance. Sex could not be determined up to the stages
examined in this study, so the data represent a mix of males and
females.

Rate Measurements

Rates of heart beat, gill ventilation, and air breathing were deter-
mined as functions of development, temperature, activity, and oxygen
level. Because an abundance of larvae and juveniles were available at
all times, no fish was used for more than one type of measurement.

Gill ventilation. Gill ventilation frequency, fG, was determined
visually from the movements of the opercula. Larvae (excluding those
from day 30) were placed in aerated, nonchlorinated water (except for
hypoxia experiments) in size-appropriate plastic chambers (1 or 2 cm
diameter, both sizes 1-cm depth) and observed under a dissecting
microscope at �5 magnification. Day 30 fish were placed in 6-cm
diameter clear polystyrene cups filled with �2 cm of water (water
volume �100–125 ml), and their gill ventilation could be observed
under normal room lighting conditions without necessity of a micro-
scope. To maintain designated oxygen level and/or temperature, 25%
of the water in the cups was very gently replaced via a syringe every
10 min during the measurement session. Care was taken to ensure that
the water in the observation chamber was changed to the appropriate
temperature and/or oxygen level without major disturbance of the fish,
as evident by the lack of stimulation of locomotor activity or, at most,
a short-lived (�4 s) locomotor response. Rates for ventilation (and for
the other measured variables described below) are, thus, considered to
be primarily “resting” rates. However, short periods of spontaneous
swimming occassionally occurred during the observation periods,
suggesting that the rates are more appropriately considered as “rou-
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tine” rates. However, any fish that showed excessive or sustained
swimming activity was eliminated from the experiment.

Air breathing. Air breathing frequency, fAB, was determined from
fish that were videoed while in the same observation chambers used
for measurement of gill ventilation and heart rates. The videos were
then visually analyzed for the release of air bubbles from the opercular
chambers signifying a completed air breath. Air breathing frequency
was calculated from all observed air breaths occurring during 15-min
periods (see Experimental Protocols below).

Heart beat. Heart beat frequency, fH, was determined visually
under the microscope from the movements of the heart through the
body wall. Larvae were placed in the same observation chambers used
for measurement of gill ventilation, but they were placed over an
angled mirror positioned to reflect the ventral surface of the fish into
the microscope lens. Indirect lighting was usually most effective in
highlighting heart movements, and was provided by the microscopes’
built-in illumination. Heart rate was measured over two successive
15-s periods, with the two values averaged to generate the average
heart rate for a given fish under a given condition at a given time.

Experimental Protocols

Enforced activity. Gill ventilation rates in normoxia at 28°C were
recorded when fish were first placed in the observation chambers and
then after 15, 30, and 45 consecutive minutes. Fish were then
mechanically disturbed with a blunt probe for 1 min, essentially
mimicking a “startle” response. They were then immediately assessed
for gill ventilation frequency and then again at 15, 30, and 45
consecutive minutes for a total of 8 measurements covering preactiv-
ity and postactivity.

Measurement of air breathing rates before, immediately after, and
following recovery followed a similar protocol as for gill ventilation,
except that air breathing was recorded at the end of consecutive
15-min periods rather than instantaneously as for fG.

Heart rates were recorded 5 min after placement in a recording
chamber, immediately after enforced activity induced, as described
above, and then 2–4 min following activity.

Acute temperature change. Fish in the observation chambers were
cooled through the gentle introduction of cold, normoxic water from
a syringe until water temperature reached 20°C, at which point fG and
fH were determined. The water was then warmed by gentle addition of
water in 5-min intervals to 25°C, 28°C, and 38°C, with a measurement
of fG and fH as each temperature was reached, before returning the fish
to 28°C. This process typically resulted in little or no locomotor
activity in the fishes in their individual containers, especially upon
cooling. Water temperatures were measured with an electronic ther-
mometer (YSI model 55 digital oxymeter; Yellow Springs Instru-
ments, Yellow Springs, OH).

Temperature sensitivity of gill ventilation and heart beat rates was
expressed as the rates Q10, calculated thusly:

Q10 � �R2

R1
�� 10

T2�T1
�

(1)

Acute oxygen change. Fish in the observation chambers were
measured for fG in normoxic water at 28°C, over two successive
15-min periods. The PO2 of the water in the observation chambers was
then lowered in a step-wise fashion to 10.6 kPa, after which rates were
measured six times at 5-min intervals. PO2 level was then further
lowered to 2.5 kPa, followed by an additional six rate measurements
at 5-min intervals. A final rate measurement was made at 1.2 kPa
before PO2 was returned to normoxic levels.

The effects of hypoxia on fH were assessed by making a measure-
ment of routine fH and then lowering PO2 to 3.1 kPa, followed after 5
min by a second measurement at this level of hypoxia.

Histology

Larvae initially preserved in 4% formalin buffered to pH 7.6 were
dehydrated with graded series of ethanol concentrations and then
embedded in paraffin with an automatic tissue processor (ZX-60,
Histolab, Göteborg, Sweden). Paraffin blocks were then prepared in
AP280-2 station and cut into 3-�m-thick serial sagittal or tranverse
sections with an automatic microtome (Microm HM, Thermo Scien-
tific). Paraffin cuts were kept overnight at 40°C. Samples were then
deparaffined with a graded series of xylene concentrations and stained
by a standard haematoxylin and eosin (H&E) used for general histo-
morphological observations. Histological preparations were observed
in a Leica DMLB microscope equipped with an Olympus DP70
digital camera (Leica Microsystems, Nussloch, Germany).

Statistics

Assessment of the significance of the effects on fG, fAB, or fH of
activity, temperature, or hypoxia at the measured developmental
stages was made with repeated-measures two-way ANOVA, followed
by Holm-Sidak test for multiple comparisons. A significance level of
0.05 was used for all tests. Analyses were conducted using SigmaPlot
Version 12.3 software.

RESULTS

Length-Body Mass Relationships

Length and wet body mass relationships for A. tropicus from
hatching to 30 days old are shown in Fig. 1. As length
increased, so too did body mass increase in a predictable
pattern, following a quadratic relationship. However, while
there was a very high correlation coefficient for this relation-
ship, the relationship between chronological age and body
mass was far more ambiguous. Above 30–40 mm in length,
individual fish from the same age class could exhibit a twofold
difference in wet body mass, reflecting differences in feeding
and food assimilation and, especially, the propensity toward
cannibalism, which led to large differential rates of body mass
increase among this group.
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Fig. 1. Length-body mass relationship in embryonic, larval, and early juvenile
A. tropicus reared at 28°C. Embryos were removed from the chorion, but
otherwise were weighed with intact yolk sac. The fitted line represents a
quadratic equation. The 95% confidence intervals are too small to be visual-
ized. Inset: frequency histogram in the �30-day age class. Sex could not be
determined at these developmental stages, so data represent a mix of males and
females.
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Ventilation Rates

Gill ventilation. Developmental changes in routine fG are
shown in Fig. 2A. Gill ventilation commenced at day 2.5 (D2.5
henceforth) of posthatch development. Initially, opercular

movements were irregular, but within a few hours of the
initiation of gill ventilation, opercular movements became
more regular, albeit at a low frequency of 1–15 beats/min at
D2.5 to D3. Ventilation in resting fish subsequently rose
quickly to a peak of 75–80 beats/min at D5. From D5 through
D30 routine fG declined to �50 beats/min.

Enforced activity significantly (P � 0.001) elevated fG by
�20–25% in all stages examined, including D2.5 when gill
ventilation first occurred (Fig. 2). Indeed, the proportional
increase in fG was largest in the youngest animals. The specific
time course of the effects of 1 min of enforced activity are
shown in Fig. 3. Upon placement in the measurement chamber
(likely resulting in some disturbance), fG was initially signifi-
cantly elevated in days 3.5, 5, and 30. However, in all days of
development, fG stabilized over the first hour of measurement,
such that values at time � 45 min (designated the “routine”
value) were generally among the lowest rates recorded. One
minute of enforced activity resulted in an immediate and
significant (P � 0.001) increase in fG in all measured devel-
opmental stages (Fig. 3). However, the stimulation of fG was
short-lived, as values of fG in all stages returning to preactivity,
routine levels within 15 min of the cessation of activity.

Not surprisingly, routine fG was sensitive to temperature at
all developmental stages (Fig. 4), with a significant intereaction
(P � 0.01) between rate and day of development. Generally,
the highest Q10 values for fG were found in the youngest larvae
at the lowest temperatures, with values of �6.5 to 9, but these
values diminished at the highest temperature interval. This
pattern of greatest temperature sensitivity for fG tended to
repeat for older larvae (Table 1). Q10 values for routine fG over
the total temperature range of 20 to 38°C ranged from 2 to 3
(Fig. 5).

Hypoxia significantly affected gill ventilation at all stages,
but the effects were qualitatively, as well as quantitatively
different depending upon developmental stage. Two distinct
patterns of ventilatory response to progressive hypoxia were
observed. In the earlier developmental stages, routine fG in-
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creased significantly (P � 0.01) in response to hypoxia (Fig.
6A). For D2.5 larvae, a significant increase in fG representing
nearly a tripling of rate occurred at 2.5 kPa, but at the most
severe hypoxia level (1.2 kPa) fG declined sharply back to
normoxic levels. In D3.5, D5, and D10 larvae, each downward
step in oxygen level stimulated an overall significant stepwise
increase in fG. However, the response to progressive hypoxia
was qualitatively different in fish from D15 and D30. Upon
first encountering mild hypoxia, fG increased as in the earlier
stages, but in D15 fish, fG returned to normoxic levels as
hypoxia became more severe (Fig. 6B). In D30 fish, the greater
hypoxic levels actually reduced fG to levels at or below values
in recorded in normoxia.

Gas bladder ventilation (air breathing). Air breathing was
observed in a few larvae as young as D2.5, although regular air
breathing at a low level of 2–4 breaths/h typically began
between D3.5 and D5 (Fig. 2B). By D15, routine air breathing
frequency increased significantly (P � 0.05) to �20–25
breaths/h, remaining at this level at D30.

Unlike gill ventilation frequency, air breathing frequency
was not significantly (P � 0.05) affected by enforced activity
at any level of development (Fig. 7).
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Heart Beat

Routine heart rate of 110–130 beats/min was first detectable
around the point of hatching (D0), and rose significantly (P �
0.01) to 140–150 beats/min by D2, a rate that was then
maintained through D30 (Fig. 8).

Just as for gill ventilation, fH was significantly increased
(P � 0.01) by 1 min of enforced activity at all measured
developmental stages, increasing by �20–25% at all measured
stages (Fig. 2C; Ref. 9).

Temperature increased heart rate as expected, with fH rising
significantly from �100 beats/min at 20°C to �175 beats/min
at 38°C (Fig. 4B). Q10 values for fH over the large temperature
range of 20 to 38°C were �1.5 at each of the three develop-
mental stages for which Q10 was measured (Table 1, Fig. 5).
Noteworthy is that Q10 values for fH were significantly lower
than the Q10 values for fG over the range 20°C to 38°C.

Hypoxia (3.1 kPA) resulted in either small or nonsignificant
increases in fH in early stages, with larger increases at D5
through D30 (Fig. 9). Notably, however, even in those stages
with significant increases in fH induced by hypoxia (D2.5,
D3.5, D4, D5, D10, and D15), the increases were much smaller
than the increases in fH produced by enforced activity.

Larval Cardiorespiratory Morphology

Aspects of embryonic and larval morphology are indicated
in Fig. 9. Eggs are translucent to transparent (Fig. 9, A and B).
While pale upon hatching (Fig. 9C), larvae quickly develop
pigmentation (Fig. 9, D and E). Not only is the yolk sac
heavily vascularized (Fig. 9E), but so too are several areas
of the cutaneous surfaces, especially the thin, flattened tail
(Fig. 9F) and the dorsal surface of the head (Fig. 9G). The

opercula develop within a few days of hatching, but still
only partially enclose and cover the gill arches by D3 (Fig.
9, G and H). By D13 to D15, the characteristic long snout
has developed (Fig. 9I).

The gills are quite rudimentary through the first days of
development, with little apparent surface area (Fig. 10, A and
B). By D9, the gills have begun elongation, and gill filaments
have begun bearing lamellae (Fig. 10C). The gas bladder is
well formed and large as early as day 4 (Fig. 10D). Swellings
in the gas bladder wall appear to be muscular bundles (arrows),
potentially apparent on D4 (Fig. 10B) and more evident by D14
(Fig. 10, E and F). By D14, the gas bladder is lobed caudally
(Fig. 10F).

DISCUSSION

Implications of Developmental Changes in Body Mass,
Length, and Shape

Growth morphometrics have been investigated as a function
of normal development, as well as modified temperature and
diet in several gar species, including the alligator gar, Atract-
osteus spatula (1, 62), the Cuban gar, Atractosteus tristoechus
(17, 18), and the tropical gar, Atractosteus tropicus (1, 25).
Body mass changes during development for A. tristoechus (17,
18) and Atractosteus tropicus (1, 25) show somewhat similar
patterns to the closely related A. tropicus presented in the
current study. However, an increase in body mass began about
D2 after hatching in the Cuban gar, suggesting that some
limited feeding must be occurring prior to yolk sac absorption
in that species. In the tropical gar, although body length was
steadily increasing in the first days after hatching, body mass
was not (25) (Fig. 1), suggesting that mass was simply being
transferred from yolk material into actual body tissue in the
absence of feeding. An overall increase in mass did not begin
to occur until complete yolk sac absorption had occurred by
about D5.

Relationships between day of development and either body
mass or body length are difficult to interpret, at least in
Atractosteus tropicus, simply because the same age class of
larvae can have very large variations in body mass and length
(Fig. 1). These variations may be due to different rates of
success in making the transition to feeding, as well as the
tendency toward cannibalism, which leads to especially rapid
growth (56). Thus, the relationship portrayed in Fig. 1 likely
conveys a more accurate sense of growth than graphs of mass
vs. age or body length vs. age employed in other studies on this
species (25). A future study looking at rates of assimilation and
growth in larval tropical gar as a function of feeding, temper-
ature, and oxygen levels would be very instructive.

Larval A. tropicus have a highly elongate, fusiform body
shape. Despite the thickly scaled skin of adults, the early larvae
have highly vascularized skin (Fig. 9, E–G). Combined, these
characteristics likely allow the body surface of larval gar to
provide for considerable gas exchange. Interestingly, in D2 to
D3 larvae, the rapidly beating pectoral fins generated a flow of
water posteriorly along the body surface. This is reminiscent of
the flow of water generated along the body surface of the larvae
of the air-breathing swamp eel Monopterus (51) which, in
conjunction with posterior to anterior blood flow, generated a
counter blood flow and water flow that is highly efficient for
cutaneous gas exchange. A study in larval A. tropicus that
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partitions gas exchange between branchial, cutaneous, and
aerial gas exchange surfaces would identify the role of cuta-
neous vs. branchial and air bladder gas exchange.

Gill and Gas Bladder Morphology

The gills of the larvae of tropical gar are rather rudimentary
up until at least D9. Gill filaments I–IV are present as early as
D2 (Fig. 10A), but by D9, the gill filaments are still relatively
short and the lamellae are sparse and widely separated along
the filaments (Fig. 9H and 10C). Many air-breathing fishes,
both facultative and obligative air breathers, possess reduced
gills structures—and, thus, reduced gill surface area—as both
larvae and adults (14, 29, 38, 77). Such reduction of gill surface
area helps to reduce the specter of oxygen loss from oxygen-
ated blood returning from the gas bladder across the gills and
out into hypoxic water. Reduced branchial surface area, cou-
pled with the reduced branchial ventilation rates in hypoxia
(see below), may be quite effective in optimizing overall gas
exchange in hypoxic environmental conditions.

As anticipated from the relatively early onset of air
breathing behavior as early as D2.5, the bladder is inflated
with air along its length by D4 (Fig. 10D). Transverse thin
sections through the body of D14 larvae reveal a well-
developed gas bladder (Fig. 10, E–G) that is lobed caudally
(G). Interestingly, muscle-like structures appeared in the
bladder walls by at least D14 (arrows in Fig. 10, E and F),
although the presence of muscle was not investigated his-
tologically. However, smooth muscle elements have been
described in the gas bladder walls of adult L. oculatus (34).
The presence of smooth muscle (in addition to the smooth
muscle of the vasculature), suggests that gar may be able to
compress or relax the bladder. Such movements potentially
would change the volume of the gas bladder, which could, in
turn, be used as a mechanism for adjusting buoyancy while
submerged. Additionally (or alternatively), regional con-
traction and relaxation of the gas bladder could affect some
stirring/mixing of gas within the lobed gas bladder, which
might aid gas exchange during submergence.
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Temperature and Physiological Rates

Not surprisingly, increases in both gill ventilation and heart
rate were positively correlated with ambient temperature (Figs.
4, 5, and 8), but the greatest temperature sensitivity was
evident at the lower temperature intervals. Interestingly, heart
rate increased to a lesser extent than gill ventilation, as tem-
perature increased (Fig. 5, Table 1). The increase in heart rate
between 28°C and 38°C was lower than between 20°C and
25°C or 25°C and 28°C (Table 1, Fig. 4B). This plateauing at
higher temperatures may reflect an absolute upper limit on the
rate at which the heart can beat and maintain normal filling and
ejection functions. Indeed, heart rates in adult fishes (excepting
tuna) are typically below 120 beats/min (22, 85). fH in larval
fishes generally peak at �200 beats/min at temperatures above
30°C (4), and this level may represent the maximum effective
heart rate for a fish heart of this size and structure. Noteworthy
is that a similar plateauing of heart rate with increasing tem-
perature, albeit at much lower temperatures and cardiac fre-
quencies in the range of 60–70 beats/min, occurs in the brook
char, Salvelinus fontinalis, as temperature increases (6).

Ventilation-perfusion matching is an important component
of effective gas exchange, and it is interesting to note that
increases in heart rate “fall behind” the increases in gill
ventilation as body temperature rises in A. tropicus. However,
rates alone do not necessarily directly reflect the volume of
branchial irrigation and perfusion, as there is a complex,
species-specific relationship between heart rate, stroke vol-
ume, and cardiac output in fishes (as described in Refs. 24,
47, and 86).

Enforced Activity and Physiological Rates

Gill ventilation rate was stimulated by enforced activity (a
startle), either resulting from initial placement in the observa-
tion apparatus (D5, D30) or from actual enforced activity
following 45 min without disturbance (all days of develop-
ment) (Fig. 3). This response was short-lived, however, and at

all days of development, fG returned to routine, preactivity
values within 15 min of activity. These findings indicate that at
least a preliminary reflex control of branchial ventilation exists,
even at the earliest stages, just hours after gill ventilation has
begun. The onset of air breathing quickly follows the onset of
gill ventilation (Fig. 2), so the presence of at least partially
developed branchial reflexes would help optimize gas ex-
change involving both gills and air bladder, especially when
larvae are in severely hypoxic water (see below).

Routine rates of air breathing in larval tropical gar increased
as development proceeded, but there was no significant effect
of enforced activity on air breathing frequency at any devel-
opmental stage (Figs. 2B and 8). Given that activity in both
normoxic and hypoxic water increases air breathing frequency
in adult gars—at least the spotted gar (15)—it is interesting to
speculate on this lack of air breathing response when gill
ventilation and heart rate clearly are stimulated by activity in
larval A. tropicus. One explanation stems from the fact that
gars place a priority on acid-base balance vs. oxygen uptake in
the face of short-term environmental modifications (15). Aerial
hyperventilation during and immediately after activity in larval
A. tropicus could contribute to hypocapnia—especially if ac-
companied by branchial hyperventilation—which, in turn,
would raise blood pH. Thus, the increase in aerial oxygen
uptake would occur at the cost of a disturbance to acid-base
balance in these larvae. Another explanation might be that in
the earliest stages of development, there is no respiratory role
for the bladder (perhaps air breathing is for bladder inflation
and buoyancy), or the reflexes controlling air breathing de-
velop later than those controlling gill ventilation. Finally, an
alternative (or additional) explanation may be found not in
cardiorespiratory physiology, but rather in predator avoidance
behavior. Surfacing for air breathing exposes especially small
air-breathing fish to the risk of aerial predation from birds and
other predators (92). Since gill ventilation (and presumably
branchial gas exchange) increases briefly with enforced activ-
ity, the lack of stimulation of air breathing in small, vulnerable
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larval stages could be an adaptation to reduce (or at least not
increase) the risk of aerial predation. In adult spotted gar,
ventilation of the air bladder is stimulated by exhaustive
exercise (15) or by the sudden switch from dark to light
associated with an experimental photoperiod (81). Presumably,
the tropical gar develops reflex control over air bladder venti-
lation relatively early in its development, but additional exper-
iments will be required to reveal the developmental onset of
such regulation.

Enforced brief activity causes a large, significant increase in
heart rate, in the range of a 20–30% increase (Fig. 2C). These
effects were larger than those induced by acute, severe hypoxia
at all developmental stages (Fig. 8). Interestingly, the cardio-
vascular effects (heart rate and dorsal aortic blood pressure) of
exercise in adult Lepisosteus oculatus were also relatively
minor (15). A cardiac “startle response” has also been docu-
mented in larval zebrafish, where it is attributed to the presence
of both sympathetic and parasympathetic branches of the
autonomic nervous system (55).

Acute Hypoxia and Physiological Rates

Gill ventilation frequency was significantly affected by
acute, progressive hypoxia, but the qualitative nature of the
responses was highly stage-specific (Fig. 6). From the onset of
gill ventilation at D2.5 through D10, hypoxia generally caused
an increase in fG, with more severe hypoxia causing more
pronounced increases. The severest hypoxia level (�1 kPa)
only failed to stimulate fG at a level of 1.2 kPa in the youngest
larvae examined, where the decrease in fG may have actually

represented a ventilatory depression in larvae too young to
overcome this severe hypoxia. Such ventilatory depression at
relatively extreme oxygen levels has also been recorded in the
larvae of strictly aquatic teleosts such as the rainbow trout (33).
Hypoxic ventilatory stimulation has been documented in the
larvae of numerous aquatic freshwater teleosts, beginning as
early as 2 days postfertilization and more fully developed by
7–9 dpf in the zebrafish (Danio rerio) (42, 71, 72, 83), which
has been most extensively studied in this regard.

In the older larvae (D15 and D30), however, progressive
hypoxia caused an initial increase in fG that was then followed
by a decline—in the case of D30 to levels that were at or below
routine fG levels in normoxia. All larvae of these later stages
recovered upon return to normoxia, so it is unlikely that this
was a direct depression of gill ventilation so much as a reflexly
triggered reduction. What might be the purpose of such a
reduction in gill ventilation in severe hypoxia? Air-breathing
fish of all stripes face the specter that oxygen gained through
aerial respiration can be lost through aquatic ventilation when
in severely hypoxic water. In almost all species, oxygenated
blood from the aerial gas exchange organ arrives via systemic
venous drainage into the heart and is then immediately pro-
pelled onto the gills, where it could be lost with a “reverse”
flow of oxygen down a PO2 gradient from branchial afferent
blood across the branchial exchange surfaces to the severely
hypoxic water irrigating the gills (14, 89). In the gars, the entire
cardiac output must flow through the gills, there being no
specialized shunt vessels to provide a branchial bypass. How-
ever, in many air-breathing fishes, the posterior gill arches have
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a reduced surface area to some extent, and oxygenated venous
blood from the heart can be preferentially shunted through
these rear arches to mitigate oxygen loss to the surrounding
water (29, 38, 77). Smatresk and Cameron (89) suggest that the
vascular arrangement in the spotted gar does not enable such
shunting. We have not examined branchial morphology of A.
tropicus in detail and, thus, cannot comment on the (likely)
absence of such shunts in this species. There is, however,
rather reduced branchial structure in larvae (Fig. 10, A–C; see
discussion above), which would reduce branchial surface area.
Even in the absence of branchial surface area reduction, there
is little doubt that the decrease in fG seen in D15 and D30 A.
tropicus will likely reduce overall branchial irrigation, unless
there is some offsetting increase in branchial stroke volume.

Such reduction in branchial irrigation will potentially limit loss
of oxygen across the gills into the surrounding hypoxic water.

Heart rate showed significant increases with hypoxia at most
but not all developmental stages, through D30 (Fig. 8). How-
ever, the induced tachycardia was small at most stages, and
certainly smaller than that induced by enforced activity. In the
rainbow trout, an hypoxic tachycardia occurs during the first 8
days of development (33), although this switches to a brady-
cardic response with further development (63). Indeed, a hy-
poxic bradycardia is typical of many adult fishes exposed to
hypoxia, including strictly aquatic fishes (23, 44, 68) and most
bimodal breathers (5, 67). The heart rate of larval zebrafish
exposed to hypoxia during the first 2 wk postfertilization has
been reported to either show a tachycardia (37) or remain
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walls. I, II, III, IV indicate gill arches. The circle in C encloses filaments with visible lamellae.
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unchanged (4), and then at later stages, a hypoxia bradycardia
develops (46). Few data on cardiac responses to hypoxia are
available for gars of any developmental stage, but it is note-
worthy that aquatic hypoxia had little or no effect on heart rate
in the adult longnose gar (89).

Development and Maturation of the Cardiorespiratory
Regulation

Both branchial ventilation and heart beat respond to en-
forced activity and to hypoxia with rate increases in larvae of
the tropical gar, Atractosteus tropicus. These cardiorespiratory
responses to both activity and aquatic hypoxia strongly indicate
the existence of physiological reflexes, which, in turn, indicates
the existence of both sensory receptors that sense the internal
and external environment, as well as the motor elements of the
reflexes that modulate the key physiological processes of
ventilation and circulation. The absence of anything but devel-
opmentally related changes in air ventilation rates does not
negate this conclusion, but rather points to the complex inter-
action between aquatic and aerial gas exchange, as well as
possible behavioral components (e.g., avoidance of predation).
The appearance of these reflexes within hours of hatching,
along with the rapid growth and maturation of the larvae,
supports the conclusion that the tropical gar is highly preco-
cious relative to many other fishes. As such, it will be inter-
esting to investigate other aspects of its physiology in a
comparative framework. Finally, of interest is the considerable
variation in air-breathing frequencies (Figs. 2 and 7) compared
with the other measured physiological rates. Certainly, some
larvae were breathing steadily by D3, while others were still
taking only infrequent breaths at this stage. This may simply
reflect intraspecific differences in the onset of the neuromus-
cular control and mechanism for air breathing. Recently, in-
traspecific differences in “boldness” involved in air breathing
have been shown in the catfish, Clarias gariepinus (58).
Perhaps such “personality” differences affecting behavior and
physiological rates arise quite early in the tropical gar, as well.
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